Protection Against Electric Shock

29/9/2023 **Eduard Dlabal**

Ohm's law El. Current (I) [Amp] El. Voltage (U) [Volt] El. Resistance (R) [Ohm]

What is Electric Shock?

Physical stimulation that occurs when an **electric current** flows through the human body

Important factors:

The **magnitude** of the current The **resistance** of the body The **duration** of the current (The path it takes in the human body, the frequency of the electrical supply)

Touch Voltage

Touch potential (touch voltage, **Ut**) is difference between the ground potential (or surface on which a person is standing) and live part (e.g. bare wire) or cover of faulty equipment.

Approximate effect of electric current I (AC)

- < 1 mA generally no reaction
- < 8 mA no dangerous effect
- 15 25 mA- muscle contractions, breathing difficulties
- > 60 mA probability of cardiac arrest, respiratory arrest, severe burns

Approximate **resistance** (impedance) of human body 2000 Ω (Ohms) **plus** contact resistance (touch resistance, etc.) = **R**

I = U/R (Ohm's law) => Approximate **limits** of touch voltage U (depending on environment)

Environment	Touch voltage - AC	Touch voltage - DC
normal, damp	50V	120V
dangerous, wet	12V	25V

Fundamentals of Electric Shock Protection

Protection must be provided under **normal conditions** and in conditions of **single fault** (e.g. insulation fault, cover mechanical fault).

Protection = Basic protection + Under fault protection

Under normal condition - Basic protection:

Protective Measures: Basic protection prevent contact with live parts, such **protection by the insulation** of live parts and **protection by means of barriers or enclosures** (covers).

Under fault condition:

Protective Measures: **Supplementary insulation**, **protective equipotential bonding**, **automatic disconnection of the supply**, simple separation, non-conductive environment, etc.

... and additional protection

Basic protection - protective measures

Under fault condition protective measures

Supplementary insulation

Protective equipotential bonding

Automatic disconnection of the supply (fuse, breaker)

Simple separation (Isolation transformer)

Non-conductive environment, etc.

Additional Protection

Residual-current circuit breaker

Electrical **safety device** that breaks an electrical circuit **with leakage current to ground.**

Detection of small leakage currents (typically 5–30 mA) and quick disconnection (<30 milliseconds) provides **additional** protection to protect damage of electrical appliance and users of electrical appliance from serious electric shock.

Current	Effects
1mA	Barely perceptible
1-3mA	Perception threshold (most cases)
3-9mA	Painful sensation
9-25mA	Muscular contraction (can't let go)
25-60mA	Respiratory paralysis (may be fatal)
60mA or more	Ventricular fibrillation (probably fatal)
4 A or more	Heart paralysis (probably fatal)
5 A or more	Tissue burning (fatal if vital organ)

Current Range And Its Effects

Types of injuries: Burns Electrical shock (cardiac, respiratory, neurological) Falls